I. CATALOG DESCRIPTION:

-		-
Α.	Departmental Information:	
	Division:	Technical
	Department:	Electricity/Electronics
	Course ID:	ELECTR 270
	Course Title:	Linear Integrated Circuit Analysis
	Units:	4
	Lecture:	3 hours
	Laboratory:	3 hours
	Prerequisites:	ELECTR 115 and ELECTR 116

Catalog Description:

A review of bipolar transistor fundamentals and differential amplifiers with emphasis on inner connections and circuit designs using integrated circuit operational amplifiers, phase-lock loops, and current differentiating amplifiers. Includes bread boarding and evaluation of various types of active linear and pulse circuits involving operational amplifiers and phase-lock loops.

Schedule Description:

A review of bipolar transistor fundamentals and differential amplifiers.

II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: One

III. EXPECTED OUTCOMES FOR STUDENTS:

Upon completion of this course, students will be able to:

- A. Explain the needs and purpose of the operational amplifier and the 555 timer.
- B. Evaluate the basic characteristics of op amps, their power requirements, feedback requirements and bandwidth limitations.
- C. Describe the op amps error sources, such as offsets, and the need for frequency compensation and bandwidth.
- D. Apply the principles of summing amplifiers, differential amplifiers, differentiators, integrators and active filters.
- E. Troubleshoot amplifier circuits.

IV. CONTENT:

- A. Linear Integrated Circuits
 - 1. Comparing linear and digital signals
 - 2. Classification and numbering of linear integrated circuits
- B. Operational Amplifier
 - 1. Operating characteristics
 - 2. Power supply considerations
- C. Basic Operational Amplifier Circuits
 - 1. Noninverting
 - 2. Inverting
 - 3. Offset considerations
 - 4. Voltage follower
 - 5. Summing amplifiers
- D. The Comparator
 - 1. Voltage comparators
 - 2. Schmitt trigger

- E. Regulator Circuits
 - 1. Voltage regulators
 - 2. Current regulation
- F. Oscillators and Wave Shaping
 - 1. Classification of oscillators
 - 2. Multivibrators
 - 3. Differentiators
 - 4. Integrators
 - 5. Square wave generator
 - 6. Sawtooth generator
 - 7. Function generator
- G. Active Filters
 - 1. Bandpass filters
 - 2. Notch filters
- H. Timers
 - 1. 555 timer
 - 2. Design considerations for 555 timer
- I. Practical Considerations
- J. Troubleshooting

V. METHODS OF INSTRUCTION:

Methods of instruction will vary from instructor to instructor but may include:

- A. Lectures and discussions about circuit classification, characteristics, functions, and troubleshooting operational amplifiers, 555 timers and other linear integrated circuits.
- B. Lectures and Discussions are complemented with handouts and laboratory projects emphasizing different circuit configurations and methods of analysis.
- C. Dynamics are accented with the use of graphs and videos.
- D. Homework is assigned to promote expertise, vocabulary and writing skills.

VI. TYPICAL ASSIGNMENTS:

Typical assignments will vary from instructor to instructor but may include:

- A. Written homework assigned each week from the questions and problems in each chapter. Typical Question: Explain the operation of an inverting amplifier.
- B. Calculate the circuit gain of a non-inverting amplifier with a given input resistance and a given feedback resistance.
- C. Design an inverting amplifier with a gain of 10. Build the amplifier and explain how it works.

VII. EVALUATION:

Β.

- A. Methods of evaluation will vary from instructor to instructor but may include:
 - 1. Timely tests
 - 2. Mid-term exam
 - 3. Final exam
 - Typical Questions:
 - a. Design and draw the completed circuit for a non-inverting amplifier whose gain is 21. The input element is 5K ohms.
 - b. What are the basic operating modes of IC timers?
 - 4. Practical evaluations with written conclusions (graded on content and spelling)
 - Frequency of evaluation will vary from instructor to instructor but may include:
 - 1. Six (6) tests
 - 2. Six (6) practical labs
 - 3. One (1) mid-term exam
 - 4. One (1) final exam

San Bernardino Valley College Curriculum Approved: FA01 Effective: FA02

VIII. TYPICAL TEXT:

Dungan, <u>Op Amps & Linear Integrated Circuits for Technicians</u>, Delmar, New York, 1995 Fiore, <u>Op Amps & Linear Integrated Circuits</u>, Delmar, New York, 2001 Caughlin, R., <u>Operational Amplifiers and Linear Integrated Circuits</u>, Prentice Hall, New Jersey, 2001

IX. OTHER SUPPLIES REQUIRED OF STUDENTS:

Scientific calculator.